

Laser Light Show Integrated System: B2

Leanna Hogarth (27793158) Geoff Goodwin-Wilson (30215164) Andrew Yan (18719154) Hooman Vaseli (54157152)

Introduction

Integrated Team Goal:

- Design and build 2 DC actuators
 - Mechanically commutated
 - Rotary
 - Permanent Magnet
- Design and build a **2-DOF electromechanical** system to position a **laser pointer**
- Develop **controls** for the system
 - Create optical animations

	。 。
yaw motor	pitch motor

Component	Requirements	Constraints	Goals
Motors	 Self-starting Operate CW & CCW Rotate at 2Hz Yaw can support pitch 	 20VDC / 4A max power (PSU power) 3D printed enclosure, waterjet laminations 	 Self-starting at <500mA Oscillate at ≥ 5Hz
Control	 PID rate at 500us Error < 10 degrees No missed encoder readings No encoder slippage 	 Current driver ≤ 4A Decoder speed ≤ 33 MHz 	 Error < 1 degree Implement limit switches Operate motors with 1 driver

High Level Design: Electromechanical System

Detailed Design: Rotors

Laminations

- Used steel for optimal electromagnet hysteresis
- Designed yaw to stack helically, with a 20° angle
 Minimized cogging
- Derived rotor parameters to ensure support of pitch
 - Maximized torque of yaw
 - Minimized weight of pitch

Winding Technique

- Used lap winding technique to allow for larger current
 - Allows more parallel paths for current to flow
- Evenly wound to prevent mechanical imbalance

Helical Alignment Holes

Lap Winding Technique

Detailed Design: Yaw Enclosure

Features

- Minimized air gap between magnets and rotor to 2mm
 - Curved slotting structure
- Considered 3D printing tolerances for precise bearing slot alignment
- Implemented double locking mechanism
 - Locking segments
 - Nut/bolt holes locking tabs
- Used 4 base mounting screw holes
 - Secure enclosure and prevent vibration
- Designed wire routing "tunnel"
 - Wire management for power leads

Detailed Design: Pitch Enclosure

Features

- Helical magnet slotting structure

 Reduce cogging
- Platform to secure encoder PCB
 - Includes slot for extra magnets
 - Increase B field if necessary
- Mounting holes to secure lid/enclosure/cuff structure
- Pitch to yaw motor attachment cylinder
 - Secure pitch for rotation

Detailed Design: Brushes

Brushes

- Looped 22 AWG wire around a rod to make springs
- Soldered copper braided-wire to springs
 - Minimized friction; prevented sparks; increased conductivity
- Soldered spring to a screw head

 Adjustable screw pressure

Slider System

- Developed a sliding lid to allow rotation
 - Ensured optimal position of brushes

Detailed Design: Commutator

Disk Commutator

- Used protractor to measure and cut equal segments
- 3D printed a platform to mount disk
 - Secured by glue, electrical tape, and windings
 - Ensured commutator was level
- Created a nylon tube to insulate commutator from shaft
 - High melting point: 265 °C
 - Will not melt with commutator sparks

Detailed Design: Printed Circuit Boards

Detailed Design: Motor Parameterization

Parameter	Yaw Motor	Pitch Motor
R(Ω)	2.5	1.8
L (mH)	3.5	0.58
K _e (mV/Rad/s)	63.1	5.64
K _t (mNm/A)	63.1	5.64
B (mNmms/rad)	241	28.5

Detailed Design: Motor Parameterization

Detailed Design: Yaw Step and Impulse Responses

Detailed Design: Yaw Step and Impulse Responses

Detailed Design: Simulink Modelling

$$TF_{YawMotorOpenLoop} = \frac{1032.5}{s(s + 703.9)(s + 2.719)}$$
$$TF_{PitchMotorOpenLoop} = \frac{21008}{s(s + 3075)(s + 4.276)}$$

We first implemented a **PD controller** as the pole at zero only allows us to cancel **one pole**

Detailed Design: Simulink Modelling

	Кр	Kd
Yaw Motor	326.28	120
Pitch Motor	483.188	113

Detailed Design: PID Implementation

PID TERM CALCULATIONS:

PROPORTIONAL	P = Kp * error
INTEGRAL	I = Ki * (I + error)(dt)
DERIVATIVE	D = Kd * (error - prevError)/(dt * N)

prevError is calculated every N cycles dt is our interrupt speed

PID CALCULATION: PID = P + I + D -255 < PID < 255, PWM = PID

PID Tuning: We adjust **Kp** for **Overshoot**, **Kd** for damping, and **Ki** for **non-linearities** not accounted for in our Simulink Model

Results & Validation: Drawing Shapes

Laser beam trace at ~10 Hz

Live graphing of Intended Setpoint and Actual Position showing the accuracy of our integrated setup

Note: tape does not represent boundaries of laser

Lessons Learned

- 1. Rotor shorted with magwire (electromagnets) **Solution:** *insulated poles with electrical tape*
- 2. Motors produced EMI that affected encoder readings **Solution:** added capacitors between commutator segments
- 3. Brushes increased friction Solution: created brushes out of soft copper braid
- 4. Inconsistent brush/commutator connection *Solution:* added brush springs to maintain contact
- 5. Motor favoured one direction **Solution:** designed sliding lid mechanism to optimize bidirectional rotation
- 6. Weak permanent magnets on pitch motor Solution: built magnet holes into encoder PCB platform

- Built 2 mechanically commutated DC actuators
- Developed an electromechanical system to position a laser pointer
- Integrated a control system
 - Motor parameters
 - PID
- Optimized the system to draw a circle at 10 Hz

Laser beam trace at ~10 Hz