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Introduction

Integrated Team Goal:

e Design and build 2 DC actuators
o Mechanically commutated
o Rotary
o Permanent Magnet

pitch motor

pi

e Design and build a 2-DOF electromechanical
system to position a laser pointer

yaw motor

e Develop controls for the system
o Create optical animations




System RCGs

Component Requirements Constraints Goals
Motors - Self-starting - 20VDC / 4A max Self-starting at
- Operate CW & CCW power (PSU power) <500mA
- Rotate at 2Hz - 3D printed enclosure, Oscillate at = 5Hz
- Yaw can support pitch waterjet laminations
Control - PID rate at 500us - Current driver < 4A Error < 1 degree

- Error < 10 degrees

- No missed encoder
readings

- No encoder slippage

- Decoder speed
< 33 MHz

&

Implement limit
switches
Operate motors
with 1 driver




High Level Design: Electromechanical System
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Detailed Design: Rotors

Laminations

- | Helical

- Alignment
| Holes

e Used steel for optimal electromagnet hysteresis

e Designed yaw to stack helically, with a 20° angle
o Minimized cogging

e Derived rotor parameters to ensure support of pitch
o Maximized torque of yaw
o Minimized weight of pitch

Winding Technique

e Used lap winding technique to allow for larger current
o Allows more parallel paths for current to flow

e Evenly wound to prevent mechanical imbalance

Lap Winding Technique




Detailed Design: Yaw Enclosure

Features

e Minimized air gap between magnets and rotor to 2mm
o  Curved slotting structure

LOCKING SEGMENTS

MAGNET SLOTS

] e e
e Implemented double locking mechanism
o Locking segments ' 7
o Nut/bolt holes locking tabs é/
. b ‘~ ~ ,‘~
e Used 4 base mounting screw holes %
o Secure enclosure and prevent vibration 4

: : ok ” HOLES
e Designed wire routing “tunnel
o  Wire management for power leads

e Considered 3D printing tolerances for precise bearing
slot alignment




Detailed Design: Pitch Enclosure

Features

e Helical magnet slotting structure
o Reduce cogging

e Platform to secure encoder PCB
o Includes slot for extra magnets
m Increase B field if necessary

e Mounting holes to secure lid/enclosure/cuff
structure

e Pitch to yaw motor attachment cylinder
o Secure pitch for rotation




Detailed Design: Brushes

Brushes
e Looped 22 AWG wire around a rod to make springs
e Soldered copper braided-wire to springs
o Minimized friction; prevented sparks;

increased conductivity

e Soldered spring to a screw head
o Adjustable screw pressure

Slider System

e Developed a sliding lid to allow rotation
o Ensured optimal position of brushes
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Detailed Design: Commutator

Disk Commutator
e Used protractor to measure and cut equal segments

e 3D printed a platform to mount disk
o Secured by glue, electrical tape, and windings
o Ensured commutator was level

e Created a nylon tube to insulate commutator from shaft
o High melting point: 265 °C
m  Will not melt with commutator sparks




Detailed Design: Printed Circuit Boards

DIGITAL ELECTRONICS BOARD (DEB)

STACKABLE |  QuADRATURE
HEADERS DECODER HCTL |

\

5-pin latch
connector to
Encoder pcb +
homing limit
switch

Reliable wiring
Connections

10 pin IDE
connector
to Motor
Drive
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Detailed Design: Motor Parameterization

FORMULAS

VBackEMF = VMeasured - IMeasured i RMeasured

VBackEMF

WpMeasured
K: = K,

B = K¢ * Ineasured

Wpeasured

Fluke PM6303A used
to measure R and L
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Parameter Yaw Motor | Pitch Motor
R(Q) 2.5 1.8
L (mH) 3.5 0.58
K, (mV/Rad/s) 63.1 5.64
K, (MNm/A) 63.1 5.64
(mNmrislrad) 241 28.5




Detailed Design: Motor Parameterization
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YAW MOTOR

Yaw Motor speed [ RPM] vs. time [S]
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Detailed Design: Yaw Step and Impulse Responses

Motor Dynamic Step Response System Impulse Response
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Detailed Design: Yaw Step and Impulse Responses

Motor Dynamic Step Response System Impulse Response
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Detailed Design: Simulink Modelling

(rad/s) . rad

Controller Saturation | E' Dyn Torque Const Nech Dyn ‘ Integiator
Q1 PWM_to_Voltage Q1 Q1 e ot &
Mapper l
Back EMF
af

- 3 1032.5
YawMotorOpenLoop ~—  g(s + 7039)(%

- B 21008
PitchMotorOpenLoop ~— (s + 3075)(s—+—4270)

We first implemented a PD controller as the pole at zero only allows
us to cancel one pole




Detailed Design: Simulink Modelling

YAW MOTOR

Yaw Motor Open Loop Root Locus

PITCH MOTOR

Pitch Motor Open Loop Root Locus
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Detailed Design: PID Implementation

GET POSITION FROM DECODERS

CALCULATE ERRORS

EXIT ISR

PID TERM CALCULATIONS:

PROPORTIONAL P =Kp * error
INTEGRAL | = Ki* (I + error)(dt)
DERIVATIVE D = Kd * (error -
prevError)/(dt * N)

prevError is calculated every N cycles
dt is our interrupt speed

PID CALCULATION:
PD=P+1+D
-255 < PID < 255, PWM = PID

PID Tuning: We adjust Kp for Overshoot, Kd for
damping, and Ki for non-linearities not accounted for
in our Simulink Model



Results & Validation: Drawing Shapes
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Live graphing of Intended Setpoint
and Actual Position showing the
accuracy of our integrated setup

Note: tape does not represent boundaries of laser




Lessons Learned

1. Rotor shorted with magwire (electromagnets)
Solution: insulated poles with electrical tape

2. Motors produced EMI that affected encoder readings
Solution: added capacitors between
commutator segments

3. Brushes increased friction
Solution: created brushes out of soft copper braid

4. Inconsistent brush/commutator connection
Solution: added brush springs to maintain contact

5. Motor favoured one direction
Solution: designed sliding lid mechanism to optimize
bidirectional rotation

6. Weak permanent magnets on pitch motor
Solution: built magnet holes into encoder PCB platform




Summary ” -

e Built 2 mechanically commutated DC
actuators

e Developed an electromechanical system
to position a laser pointer

e Integrated a control system
o Motor parameters
o PID

e Optimized the system to draw a circle at
10 Hz

Laser beam trace at ~10 Hz




